Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells
نویسندگان
چکیده
We previously reported that TR2 and TR4 orphan nuclear receptors bind to direct repeat (DR) elements in the ε- and γ-globin promoters, and act as molecular anchors for the recruitment of epigenetic corepressors of the multifaceted DRED complex, thereby leading to ε- and γ-globin transcriptional repression during definitive erythropoiesis. Other than the ε- and γ-globin and the GATA1 genes, TR4-regulated target genes in human erythroid cells remain unknown. Here, we identified TR4 binding sites genome-wide using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) as human primary CD34(+) hematopoietic progenitors differentiated progressively to late erythroid precursors. We also performed whole transcriptome analyses by RNA-seq to identify TR4 downstream targets after lentiviral-mediated TR4 shRNA knockdown in erythroid cells. Analyses from combined ChIP-seq and RNA-seq datasets indicate that DR1 motifs are more prevalent in the proximal promoters of TR4 direct target genes, which are involved in basic biological functions (e.g., mRNA processing, ribosomal assembly, RNA splicing and primary metabolic processes). In contrast, other non-DR1 repeat motifs (DR4, ER6 and IR1) are more prevalent at gene-distal TR4 binding sites. Of these, approximately 50% are also marked with epigenetic chromatin signatures (such as P300, H3K27ac, H3K4me1 and H3K27me3) associated with enhancer function. Thus, we hypothesize that TR4 regulates gene transcription via gene-proximal DR1 sites as TR4/TR2 heterodimers, while it can associate with novel nuclear receptor partners (such as RXR) to bind to distant non-DR1 consensus sites. In summary, this study reveals that the TR4 regulatory network is far more complex than previously appreciated and that TR4 regulates basic, essential biological processes during the terminal differentiation of human erythroid cells.
منابع مشابه
The nuclear orphan receptor TR4 promotes proliferation of myeloid progenitor cells.
Nuclear receptors represent key regulators in cell proliferation, differentiation, and development. Here we demonstrate that the nuclear orphan receptor TR4 is highly expressed in hematopoietic cells and tissues and have analyzed the impact of TR4 in this cell compartment. We show that TR4, when ectopically expressed in bone marrow cells via retrovirus vector, promotes proliferation of myeloid ...
متن کاملCompound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes.
The orphan nuclear receptors TR2 and TR4 have been shown to play key roles in repressing the embryonic and fetal globin genes in erythroid cells. However, combined germline inactivation of Tr2 and Tr4 leads to periimplantation lethal demise in inbred mice. Hence, we have previously been unable to examine the consequences of their dual loss of function in adult definitive erythroid cells. To cir...
متن کاملTR4 orphan receptor represses the human steroid 21-hydroxylase gene expression through the monomeric AGGTCA motif.
The human TR4 orphan receptor (TR4) is a member of the nuclear receptor superfamily. It functions as a transcriptional factor which regulates and controls many important physiological functions. It has been documented that TR4 may bind as a homodimer to a DNA response element containing two direct repeats of the AGGTCA consensus motif. Surprisingly, our data reveal that the expression of the hu...
متن کاملLoss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis.
OBJECTIVE Regulation of phosphoenolpyruvate carboxykinase (PEPCK), the key gene in gluconeogenesis, is critical for glucose homeostasis in response to quick nutritional depletion and/or hormonal alteration. RESEARCH DESIGN/METHODS AND RESULTS Here, we identified the testicular orphan nuclear receptor 4 (TR4) as a key PEPCK regulator modulating PEPCK gene via a transcriptional mechanism. TR4 t...
متن کاملHuman and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily.
We have identified a member of the steroid receptor superfamily and cloned it from human and rat hypothalamus, prostate, and testis cDNA libraries. The open reading frame between first ATG and terminator TGA can encode 615 (human) and 596 (rat) amino acids with calculated molecular mass of 67.3 (human) and 65.4 (rat) kDa. The amino acid sequence of this protein, called TR4 orphan receptor, is c...
متن کامل